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RELATIONSHIP BETWEEN THE FEASIBLE
GROUP AND THE POINT GRCQUP Cf
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ABSTRACT
The r8le of the point group in conven-

tional rigid molecule theory is reviewed and its
relationship to the feasible group discussed.

tWork performed under the auspices of the USERDA.



.t vue

It is very important to understand the relationship between
the feasible group of a rigid molecule as discussed in Dr. Hougen's
talk and the conventional point group of the molecule. It is my beligf
that neither of these groups is more fundamental than the other, that
both concépts generalize to nonrigid molecules, and that both groups
(as well as others) are important in the study of molecular models.
This viewpoint will be defended here only for rigid molecules, and in
such a way as to complement Dr. Hougen's presentation.

The viewpoint I shall piesent is the conventional one and
is developed, for example, in the article by Wilson and Howard (1) and
in the book by Wilson, Decius, and Cross (2). I shall, however, empha-
size throughout this talk the réles of the point group and of the mov-
ing frame. My colleague, Harold W. Galbraith, and I have developed
these details elsewhere (Refs. 3,4), but I believe it to be useful to
review again the more essential features of this approach. I shall
focus on twso aspects cf the description of a rigid molecule: (i) the
description of the static model (equilibrium'configuration) of a mole-
cule; and (ii) the description of the motion of the dynamical model of
the molecule in space-time.

Consider firsc. the 4 ‘scription of the static model (the dumbbell
model made up of rods and spheres). The static model will be described
in a laboratory frame L with basis vectors (21,52,33) (a right-handed
triad of perpendicu’ar unit vectors) which is a principal axes system
located at the center of mass. Let A denote the set of vectors

A = {:“la = 1,2,---,“ }' ‘1)

where a% is the position vector from the origin of L to the point where
the aton. labelled by o is located. Each vector a% may be expressed re-
lative to the frame L as

2% = ag ;1 + ag 22 + ag 33, (2)
where (ag, ag, ag) are specified real numbers.

Consider next the partitioning of A corresponding to sats of
identical particles. Let Ak denote the subset of A cunsisting of posi-
tion vectors of identical particles of "type k". Then A way be written
as the union of the disjoint subsets { Aklch}, where K is a set index-
ing the distinct types of atoms:

A-:Ak. : _ (3)



" We now 2 the point group G of a molecule with static model
As

G = { R|ReG and R: A, * A, each keK], Q)

where G denotes the group of rotation-inversions of the gpace R3
[Euclidean 3-space with points (xl, Xy x3) which we will describe us-
ing the frame L].

We shall use the notation g to denote an element of the point
group G.

There are two representations of the group G which play a
significant role in chis presentation:

(i) The representation of a proper rotation g as a linear
transformation of the points of R3. In vector notation, we have

3 3

g: R™ + R

T+ mghmxcos ¢+ (NX)X(L - cos ¢) ()

+ (; X i) sin ¢ ,

where g is a positive rotation (right-hand screw rule) by angle ¢ about
the direction specified by the unit vector n as determired from g = ReG.
g may also be represented by the 3x3 proper orthogonal matrix with ele-
ment in row i and column j given by

Rij‘g) -0y gzj . ' (6)

The invevrsion 1 of the space R3 is defined by 1 X = - X and is
represented by - 13, where I3 denotes the 3x3 unit matrix.

(1) The representation of g as a linear transformation on
the elements of the set A. We may write

gr A+ A ¥

l*l*Z »1:2

a“a AN - 3122,..3Y P(g),

where we have ordersd the elements of A and placed them in a 1xN row
vector. P(g) is then an NxN permutation matrix.
Observe that the group multiplication properties are satisfied:

g’ (gX) = (g'g)% , each % ¢ R,



R(g’)R(g9) = R(g'g) ,

! (8)
P(g’)P(g) = P(g'q) ,
for all g,g’¢ G. Thus, the two correspondences
g » R{g) and g » P(g), each g € G , (9)
are representations of the point group G.
If we denote by A the 3xN matrix
1 .2 N
a; aj ... a;
1 .2 N
A a, a, ... a, R (10)
1 .2 N
aj a3 ... a,
then A intertwines the representations { P(g)|g ¢ G}, that is,
R(g) A = A P(g), each , ¢ G. (11)

Ralation (11) is the key result obtained from the siatie model of a
rigid moleoule. .

Consider next the model for the motion of the molecule in
space-time. Intuitively, we have in mind the following situation. We
imagine that the rigid framework translates and rotates in space and
that the atoms execute small oscillatory motions in the neighborhood of
the (moving) equilibrium points. This intuitive picture for a set of
motions of N particles corresponds to our conception of the motions
(based on empirical knowledge) of what is today called a "rigid" mole-
cule, There are sufficiently many molecules of the "rigid type" to
justify a careful development of such a model. [A phenomenological
model of a molecule such as this one clearly ignores many aspects of a
"real molecule," and one does not expect the model to have general
validity — the model is designed specifically for the description of
vibration-rotation motions of the atoms, and even then for a limited
energy domain,}

Even after settling on the model above, there are still many
approaches that one might uss to formulate a description of the motions.
Let us continue the intuitive discussion The use of a moving reference
frame is suggested if one wishes to obtain a Hamiltonian for the system
which, for motions in the neighborhood of the equilibrsium configuration,



has the approximate form

Tem, Y Hp * Hy o (12)

where TC M is the kinetic energy of the center of mass, HR the rota-
tional energy, and HV a Hamiltonian term for the kinetic¢ and potential
energies of the small motions near equilibrium. Intuition suggests the

following forms for Hp and Hy,:
2 2 5
Hp = 33- * 55= * 357 ¢
1 2 3
3N~-6 (13)

B, 21 ®2 + W2aly/2 .
=

In the definition of HR' the symbol Ji (i=1,2,3) denotes the
component of the total angular momentum 3 along the i-th axis of the
moving frame; Ii ie the principal iwwument of inertia of the equilibrium
configuration about the i-th axis of the moving frame. (We choose the
moving frame to coincide with a principal axis system when the atoms are
located at their equilibriuia points.) 1n the definition of HV' the
symbol qu(u=l,2,..., 3N-6) denotes a normal coordinate, pu its conjugate
linear momentum, and wu the frequency of the u-th normal mode of oscilla-
tion. (The normal mode analysis of the vibrational motion may be
carried out on the non-rotating molecule by several available methods.)

Let us next consider how one may give a precise formulation
of the approach outlined above.

The first problem which must be solved is that of finding an
appropriate moving reference frame. Eckart {5) solved ti:is problem by
impusing two conditions on the moving frame:

(1) Cagimir's condition. In the limit of vanishing
displacements away from the equilibrium confiquration, the Coriolis
interaction between rotation and internal motions should be zero.

(ii) Linearity of internal coordinates. The internal degrees of
freedom should be described by coordinates which are linear combinations
(with fixed numerical coefficients) of the components of the displace-
ment away from equilibrium where the compcnents are referred to the
moving frame.

The second condition is imposed to assure that the normal
coordinates calculated for the non-rotating molecule can be carried
over, without echange, to the rotating, vibrating molecule.

{We have gone to the trouble of briefly discussing the
elementary (and standard) results above because the Eckart frame is



the key concept for understanding the r8le of the point group G in the
molecular motions problem for rigid molecules.]

The explicit construction of the Eckart frame may be given
in the following manner: (i) Introduce the three vectors Fi defined by

a 2o '
F Emua X ' (14)

where x* is the instantaneous position vector of atom a in the labora-
toryafrgme L. (ii) Define a triad of unit perpendicular vectors
(fl.fz.f ) by

= 2:( 1/2) F. ., (15)

J
where F denotes the symmetric Gram matrix with elements F, ij = ?i-Fj.
[We assume that Fl Fz,F3 are linearly independent so that F is positive
definite; F =172 is then, by definition, the p031t1ve def1n1te matrix
such that r 172 p~1/2 _ -1 .1 The three vectors (fl,f f ) then define
a moving frame F such that conditions (i) and (ii) above are satisfied.
Observe that the Eckart vectors depend implicitly on the

particle position vectors **. If we denote this result by writing
fi(§1,...,§N), then one easily verifies from Egs. (14) and (15) that

fi(nil,...,niN) = (e (x4,...,%Y), each Res, (1)

f1(§1 + 3,...,§N+ a) = fiiil,...,§N) for arbitrary translations

->

a. (17)

Thus, under an arbitrary rotation-inversion R of the molecule, the
Eckart frame undergoes the same rotation-inversion. Under an arbitrary
translation of the molecule, the Eckart frame is invariant. (It is this
second property which allows us to convider that the Eckart frame is
located at the center of mass of the moving molecule.)

Now that the moving reference frame F is defined (we consider
only nonplanar molecules he-e), we may determine the transformation from
the Cartesian coordinates A? = ;“.gi relative to the laboratory frame
to "molecular coordinates." The position vectur of atom a is given by

LIS JPr-L R C (18)
where

(1) R is the instantaneous center of mass vector;
(11) &% is the poeition vector of the moving equilibrium point
of atom o relative to the center of mass and of the form



+0 az Lag as
c = alfl + a2f2 + a3f3 . (19)

when referred to the moving Eckart frame;

(iii) 3“ is the displacement vector of atom a from

the equilibrium point R + ¢,

There are six conditions imposed on the displacement vectors
{2%}:
L 2: 2+q
Center of mass condition: = m.p = 3, (20)
Eckart conditions: Z; m, % x = S. 121)

[The second set of conditions results from an easily proved
relation between the Eckart frame vectors fi and the §i:

£, x B+ £, x By + £, x Fy =0 .
Let us call a set of vectors { p%|a = 1,...,N} which satisfies

Egs. (20)and (21) a set displacement vectora for the frame (fl'fz'f3)'
It is convenient to reformulate Eqs. (20) and (21) in the form:

z;zg-z“ =0, (i=1,2,3), (20)

4335% = 0, (1= 4,56, (21)
vwhere
sa 2, 1/2 =
54 mafilm , Z; my v
4 S =1/2 ,% +q
Bi43 = MNy T O(E; X ) (22)

- £, X 2% .(F. X 20
Ni ;ma (fi c) (fi c))

for i = 1,2,3. Observe that the vectors in the set { E:It = 1,.4.,6}
satisfy the orthogonality relations:

-l2a +a _
zu: My Sp 8¢ = Spe - (23)

It is always possikle (in infinitely many ways) to f£ind
additional vectors §3+6’ u=1,2,...,3N-6, such that the 3N vectors in
the set

{ ;:|t =1,...,3N) (24)

satisfy the orthogonality relations

=l+q o
%?mu Bpt¥y = Spe (25)

Furthermoxe, all rectors 3: may be chosen to have numerical com-
ponents relative to the Eckart frame, that is,



Ie, N

8 i = real numerical constant . (26)

t

These results all follow from the fact that it is possible

to construct a 3Nx3N orthogonal matrix with numerical entries

in infinitely many ways when only the first six rows are

specified (numerical) row vectors (N > 3).

The principal result obtained from the above analysis is: The
rotation~-inversion invariants defined by

Q ‘Z’s"’

>a
"] a - p+é p

sy u=1,2,...,3N-6 (27)
span the 3N-6 dimensional space of the internal coordinates.
" [We use the term "span" here in the sense that each internal coordinate
of the form § = g E“-B“ ' Ea a triple of real numbers, has the form
- F I = 7 i i = -
£ = E EuQu urthermore, i auQu = buQu implies au bu ]
Using Eqs. (20’), (21’) and (25), we may invert Eq. (27) to

obtain
3¢ = m-li*a+6 Q, - (28)
Taking compongnts of Eq. (18) relative to the laboratory
frame, we obtain the transformation:
xg = R +:E:C (a + p ) , .
e 0, @

p+6,1 Y]

For each choice of the vectors s 6(u =1l,...,3N~6), Eqs. (29)
deflne an explicit transformatlon from the 3N Cartesian coordinates
{ x- } to the 3N coordlnates

R:{(i =1,2,3); C (contalnlng 3 independent coordinates);
Q= {Qulu =1,...,3N-6} . (30)

Furthermore, the transformation (29) is invertible for those

values of the { xg} for which the Eckart frame construction exists

(det F # 0).

This completes the construction of the dynamical molecular model.
Using the transformation (29) the classical Hamiltonian

H= 21-;'1 m, (ig) + Vix]) (31)
and the quantum mechanical Hamiltonian
2
e - 12/ a
Hop 221:(3,‘2) * Vi) , (32)

may be transformed unambiguously to the 3N molecular coordinates (30)



(confer Ref. 4). Furthermore, when the potential =energy is approximat-
ed by a quadratic form in the internal coordinates’ { Qu}' one obtains
from Egs. (31) and (32) approximate Hamiltonians of the forms (13).

We are now in a position to state the r8le of the point group
G in the dynamical molecular model. We first define the action of the
group G on a generic set Y = {§a|u =1,2,...,N} of instantaneous posi-

tion vectors relative to the center of mass: ;a = x* - R. Consider the
set of linear operators
L(G) = {r lg € 6}, (33)

where Lg: Y + 2 is the linear mapping of a set Y of instantaneous posi-
tion vectors (relative to the center of mass) onto a second set Z of
instantaneous position vectors (relative to the center of mass) given

by
Lt ¥+ 2% = 1 3% =), w¥hie (@ (34)
g B GB

in which

(1) {P(g)|g ¢ G} is the NxN permatation matrix representa-
tion (7) of G;

(ii) 9;8 is the linear transformation defined for an arbitrary
vector ; by

vwhere {R(g)|g ¢ G} is the 3x3 orthogonal matrix repre-
gen*ation (6) of G, and the Eckart frame vectors

fi (i = 112 ¢ 3) are those correspondlng to posxtlon
vectors y ,...,y , that 1s, Ll = fi (y ,...,y )
Observe that gy -gye = y -y8 so that g is a rotation-

inversion and that g’ (g¥) = (g’g)y.

An alternatlve express;on for the transformation (34) in terms
of the components y -fi and (L y ) f relative to the Eckart franme
vectors fi = fi (y ,...,y ) 1s

~

(Lg¥™ £ = B):j (P()® Ry, gy -5y (36)

where P(g) ® R(g) is the (matrix) direct product of P(g) with R(g) and
(P(g) ® R(g)]ai ey = P.gld) Rij(g) denotes the element of P(g) @ P(g)
in row ai and column 83.



The opesrators {Lglg € G} satisfv the following relations:

(i) Lg,(Lg?u) = L, ;a for arbitrary ;u;

9'g
(ii) Lg?:“ =¢% a=1,2,...,N ; (37)
(1ii) Lg?i = £, i=1,2,3,

where

(Lg?i)(;l,,.,,;")s Ei(r.gi",...,bg?“).

The proofs of these relations are straightforward and may be found in
Ref. 3.

Equation (i) means that the correspondence g =+ Lg is a linear
repregentarion of G; Eq. (ii) meaas that G is an Zgotropy group of the
set of vectors {gula =1,...,N) which define the static model [Eq. (11)
for the static model provides the proof of (ii)]}; and Eq. (iii) means
that the Eckart frame is invariant under the action Lg of G.

Equations (37) are the key relations for establish’—, ..~ rdle
of the point group in the dynamical molecular model.

A prineipal result ise: The group of operators

L(G) = {Lylg & G} ~ (38)

may be used to split the space of internal coordinates into subspaces
whieh transform irreducibly under L(G).

Proof. Let {5%) denote any set of displacement vectors for
the frame (El'f2’23)' Since Lg;“ = % + ngu, it follows that the set

of vectors

{Lg8*fa = 1,2,...,N} ' (39)

"~ ~

is also a set of displacement vectors for the frame (fi,fz,f3).
Now choose any basis set {Qulu = 1,...,3N-6} for the internal
coordinates [cf. Egs. (24)-(28)]. S'nce

L T 8

(1gh") - £ BZJ (P(g) ® RUg)] 0505 (40)

we find
= ga . sa =

L0, Za:sws (Lgp™) vauv(g)ov. (41)

where
= -1 _a 8
Myvla) = azi;j Mg" S,46,i Sv+s,j (F(9) ® R(g”ui,sj ’ (42)
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The properties (i) Lg,Lg =L g (group property) and (ii)
X =

F% 9 =3
+he set of matrices (dimension 3N-6)

{M(qg)|g € G} (43)

[Te)

buou implies au = bu (basis property) togecher imply that

is a representation of G. The complete reduction of this representation
into irreducible representations of G then defines internal coordinates
of the form

5: =¥a£u Qr v=12,....dim T, (44)

which are transformed according to irreducible representation T of G
under the action Lg of G.

We see from the above that the group of operators L(G) solves
fully the problem of classifying the internal coordinates according to
their transformation properties under the irreducible representations
of the point group G.

Let us next consider the réle of the permutation group in
the molecular model. The Schrddinger equation for a molecule (point
atoms + point electrons + Coulomb interactions) is invariant under any
permutation of the coordinates of identical particles. The model of a
molecule which we have described will, in general, not be invariant
under all permutations of identical atoms; this is because the general
permutational symmetry may be broken by the choice of a phenomenological
potential energy funeiion which, in principle, allows one to distinguish
spatiallyrin a finite time, between atoms that would otherwise be called
identical. Said somewhat differently, the form of the phenomenological
potential energy function might not admit tunneling effects, hence, no
tunneling will be predicted by such a model. Before any molecular model
is complete, one must choose (by specifying the potential energy func-
tion) which permutations of coordinates of identical atoms are to be
allowed and which are not. (A bad choice may give a model whose pre-
dictions do not agree well with experiment.)

In the model of a "rigid" molecule, one implicitly assumes
that no tunneling takes place. (This assumptiorn is made when one chooses
a potential energy function which keeps the atoms near their equilibrium
positions.) The question then arises as to which permutations of coor-
dinates of identical atoms are allowed by this model. The answer is
easily given. Since the kinetic energy is invariant under the group P
of all permutations of coordinates of identical atoms, it is the pro-
perties of the potential energy function alone under permutations of
coordinates of identical atoms which restricts the symmetry of the
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Hamiltonian to a subgroup of P. But, by assumption, the potential
energy function V of a rigid molecule is the most general function of
the internal cocrdinates {Qu = 1,...,3IN-6} which is analytic in the
neighborhood of the equilibrium configuration and such that:

(1) Equilibrium conditions

%% = 0; (45)

u'equisibrium
(i1) Invariance conditions

VALLQ) o en oD@y o) = VIQpseeiQqy o) (46)

each g ¢ G. Thus, our problem is to determine the properties of the
function (46) under permutations of coordinates of identical atoms.

In order to examine the above problem, we require a careful
definition of "permutations of coordinates of identical particles" and
the resulting properties of the internal coordinates under such per-
mutations.

Let there be ny identical ator = of type k labelled by
distinct integers

op(k)s oy ()seenray (K)

and let the position vectors of these atoms in the laboratory frame
be the vectors in the set Xy given by

Xy = {(x%|a = ay (k) yeeeiar

n, 0003+ 47

where ;“ is the positiun vector of the atom labelled a. 4 permutation
Pk of the set of position vectors of the identical atoms of type k isg
a mapping cf xk onto xk. The product of two permutations PL and Pk

is then the usual composition of mappings. The set of all such mapp-
ings then forms a group isomorphic to the symmetric group Sp, « Index-
ing the "types" of identical atoms by k = 1,2,...,m (kEI- N), we
see thac P P, = P /Py (k' % k) on the set X = U X, and that each
permutation P: X + X of position vectors of identical atoms of the
molecule has the form
m
P=NN P, , P, 8 . (48)
k=1 k k n, .
Consider next the linear mapping Lg defined by Eq. (34). Then

the linear mapping ch ¥ » Y defined by

P wgl -1 ! each g ¢ G (49)
9 9 ‘
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is a permutation of position vectors (relative to the center of mass)

of identical atoms:
Py =38P, (q) . (50)

Furthermore, the set of permutations which map Y onto Y given by

P(6) = {P g € G) (51)
forms a group under composition of mappings; hence,
oy *a
Pg/(PgY ) Pg:gy . (52)

The action of the group of permutations P(G) on the vectors
{Eala =1,...,N} which give the equilibrium positions relative to the
Eckart frame and the set of displacement vectors {Bala =1,...,N} is
qiven respectively by

0 +q +8
P = 3% = gc Pao(9) (53)

-

P
g p

LI LD D L SR (54)
g B
Observe then that Eq. (52) is also valid when ;“ is replaced by c®
0t
or p .
The following useful properties of the permutations (50) may
also be derived using the definition (49) or (50):

2 1 N e 1 N
W) £y (Y o ¥ = (GE) (T T (55)
This result states that the Eckart frame corresponding to the permuted

position vectors P §1,...,P ;N'is the rotation g of the frame F ccrres-

g
ponding to the position vectors ;1,....§N.

@ R =L 0, . (56)

In this relation, Pgou is defined to be the result obtained from ou
by applying the permutation (50). Thus,

a £ \V.ip IO
P, = § 80,6, (9 (BF%)
a £ ota—lp 20 *a “*a
g 46,1 fi (g ng ) = zq: 8 +6 Lg_lp
-1..,9, (57)

- = —1
(A1) Bgr (RgQy) = PgrgQy = (§7L , 49 (L 0. (58)
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This relation may be proved by applying Pg, to the first line of Eq.
(57). Thus,

= e ! £ . ta =
Pyr (P Q) § Syg,q 19 (9F )1 1P, (P3N = By 0

2a =1 ,-1 *0, 2a L. =1 *a
=§ Su+6'9 9 TPy (Pgo ) Ea S,+6 (g Lg, -9 (Lg_lo )
-1
= (gL _,9( _,Q2) .
g’ 1 g 154

We can now state the first important result on the permutation
symmetry of the potential energy function V(Ql""'Q3N-6) of a rigid
molecule: The potential energy function V(Ql,...,Q3N_6) 18 invariant
under the group P(G):

V(Pgoll-oOIPgQ3N_6) = V(an---'Q3N_6) ’ (59)

each g £ G.

Proof. Confer Eqs. (57) and (46).

The second important result relates to the representation
of the group P(G) as a semi-direct product group: The a:tion ofheagh .
permutation P_ € P(G) on the molecular coordinates (F;Q), F = (fl,fz,f3),
Q= ‘°1"°°'°3N-5’ can be represented by the ordered pair, Pg = (g, Lg_l):

(g,L _1)(F:Q) = (gF; L -1°) ' (60)
g g

whare the nultiplication rule for pairs ts that of a semi-direct produot:

-1
(¢, L _)lg,L _,) = (E’q.(g L _.9)u _ ) . (61)
g 1l g 1 g’ 1 g 1

Proof. Confer Egs., (55) and (58).

It is apparent from the preceding results that it is irrele-
vant as to which of the two groups L(G) or P(G) (each isomorphic to the
point group G) we use to classify the internal coordinates according to
their transformation properties under the irreducible representations
of the point group G. In either case, it is the point group G itself
which plays the fundamental réle, and it is obtained from the static
model of the molecule. '

We have not yet encountered the fesasible group. Let us now
give its definition and discuss below its relation to the groups G, L(G),
and P(G).
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The feasible group F{G) of a rigid molecule is the union

F(G) = F+(G) U F_(G) , (62)
where F+(g) is the subgroup of P(G) defined by

F, (G) = {Pglg € G and det R(g) = + 1} : (63)
and F_(G) is the set of operators defined by

F_(G) = {IPgIg t G and det R(g) = -1} (64)

in which T is the inversion operator on the space R3.

The action of the group F(G) on the internal coordinates is
the same as that of the group P(G), since each of the internal coor-
dinates Qu is invariant under inversion. The action of the two groups
on the Eckart frame is, however, different, since

fi(Pg;ll.o-ng§N) =, (gfi) (§l'--'l§n) ’

~ A N
fargt . te Y = - e LY (65)

Thus, the action of each elemant of the feasible group on the Eakart
frame 18 always a pure rotation.

Summary. The isomorphic groups L(G), P(G), and F(G) have
the actions on the molecular coordinates (F;Q) given by

F Q
L(G) g Lg
P(G) g L -1
g
F(G) g for det g = + 1 L -1
g

~g for det g = - 1

Critique. The Hamiltonian H of Eq. (31) [and (32)] is
invariant under all pure rotations and inversion of R3, and there is no
apparent reason, in the case of rigid molecules, for introducing the
feasible group since it occurs already as a subgroup of the group ob-
tained by adjoining 7 to P(G). This same criticism applies, of course,
to non-rigid molecules: The Hamiltonian for a model of a non-rigid
molecule will be invariant under all rotation-inversions of the space
R3 as well as some subgroup of the group of permutations of the position
vectors of identical particles {cf. Eq. (48)), the particular subgroup
being fixed by the properties of the potential enerqgy function which
is chosen for the model, this choice itself being based on physical
considerations. It is therefore difficult to see the advantages of
introducing the feasible group in place of conventional approaches.
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I conclude with some remarks about the point group. Does the
concept of a "point group" generalize to non-rigid molecules? Pre-
liminary investigations (Ref. 6) indicate that it does for a class of
such molecules, the key concepts being: (1) a definition of an
appropriate bodv-fixed frawne (or frames); and (ii) the definition of
a group of transformations leaving the frame invariant.
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